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Detection of mutual phase synchronization in multivariate signals
and application to phase ensembles and chaotic data
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This work presents a method for the detection of mutual phase synchronization in nonstationary time series.
We show how the application of a cluster algorithm that considers spatiotemporal structures of data follows
from the general condition of phase-synchronized data. In view of the topology of phasic data, we reformulate
the K-means cluster algorithm on a flat torus and apply a segmentation index derived in an earlier work@A.
Hutt and H. Riedel, Physica D177, 203 ~2003!#. This index is extended by means of averaging in order to
reflect phase synchronization in ensembles of multivariate time series. The method is illustrated using simu-
lated multivariate phase dynamics and arrays of chaotic systems, in which temporal segments of phase-
synchronized states are registered. A comparison with results from an existing bivariate synchronization index
reveals major advantages of our method.
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I. INTRODUCTION

To gain insight into the underlying dynamical mech
nisms, the temporal activity in spatially extended syste
needs to be measured. Experimental studies aiming for
extraction of spatiotemporal activity usually apply sets
spatially distributed detectors that yield multivariate time
ries, as can be appreciated in several studies in neurosc
@1–3#, chemistry@4#, meteorology@5#, and solid state physic
@6,7#. Extracting and understanding of the underpinning d
namics in a generality is far from trivial. For instance, in t
case of thermodynamically open systems, empirical d
typically contain various time scales, which complicates
modeling of data, as many models basically cover rather
row bands of time scales. However, data recorded in cer
open systems might be split into temporal sequences of
transients on the one hand and time windows of narrow-b
time scales on the other. Such phenomena are prominen
example, in cognitive neuroscience@8#, hydrodynamics
@9,10#, lasers physics@11,12#, or in various chaotic system
@13,14#.

A general framework addressing this issue is given
concepts of coherence or synchronization. In recent ye
large achievements led to conceptually new approache
biological systems@15–18# or, more generically, in network
of coupled oscillatory systems@19–23#. A system’s behavior
that alternates in time as mentioned before, i.e., fast t
sients versus narrow-band time scales, can be generaliz
alternations between transients and synchronized states

*Electronic address: hutt@wias-berlin.de
†Electronic address: marlow@fbw.vu.nl
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detect the resulting segments in time, several works inve
gated global amplitude coherence in nonstationary multiv
ate time series@8,24–29#. Indeed, these phenomena typica
exhibit both a single mutual increase and a mutual decre
of amplitudes, that is, they do not oscillate in time. Wi
respect to synchronization, however, this behavior is equ
lent to mutual phase synchronization if all amplitudes are
phase. Since phase synchronization plays an important
in complex systems@4,17,18,30#, we put all the previously
listed phenomena in this, more general context and treat
detection of quasistationary mutual phase synchroniza
~see, e.g., Refs.@17,31–33#!.

Starting with time series of amplitudes, correspondi
time-dependent phase angles may be obtained from a w
let analysis, via the Gabor transformation, or via the Hilb
transformation. Widely used indices forn:m phase synchro-
nization are the circular variance of phases and tests on
tistical distributions of phases@31,34–37#. In fact, all these
methods apply to bivariate data, whereas in the present s
we treat multivariate data. For this kind of setups one c
find several studies considering averaged phases@34,35# but,
unfortunately, they commonly neglect eventually hetero
neous phase distributions. To the best of our knowledg
reliable detection method for mutual phase synchroniza
in multivariate data has not been derived yet. Notice that
general, phase synchronization may occur in heterogene
phase distributions~e.g., Refs.@38–40#!. Therefore, we will
discuss a phase-synchronization index, which incorpora
both the time dependance and the distribution of phases
more detail, we will introduce a clustering method to dete
quasistationary phase synchronization. As an extension
recent works@28,29#, this method will allow for the segmen
tation of multivariate data by considering the spatio-tempo
data structure comprising a cluster algorithm for phasic d
©2003 The American Physical Society19-1
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FIG. 1. Covering mapq and
nonuniqueness of geodesic
PointsQi are mapped to a single
point Q8. On the right-hand side
two geodesics are drawn, whic
correspond to two couples o
points (P,Qi). On the left-hand
side, the dotted lattice represen
the cuboid of mediatrices, which
contains the point couplePQ1

with the smallest distance on th
torus.
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as well as an average segmentation index for ensemble
time series. In particular, we will show in detail that the lat
step reveals phase-synchronization properties of system
respective of specific realizations. Applications to nons
tionary data obtained from both a stochastic model netw
and arrays of coupled Lorenz systems serve to illustrate
method.

The paper is structured as follows. In Sec. II, we disc
the topology of multivariate phasic data and derive ma
elements of a specific form of theK-means cluster algorithm
as it will be used here. Applications to simulated data follo
in Sec. III. Finally, we contrast our method to an existi
bivariate synchronization index utilizing simulated data~Sec.
III D !.

II. METHODS

A. Clustering

To begin with, we recast multivariate signals as a tem
ral sequence of data points in high-dimensional data sp
because in this picture quasistationary signals exhibit sm
variations in data space contrasting large changes du
transient behavior. That is, small data variations result
high data point densities and, consequently, quasistatio
signal states become visible as point clusters in data s
@29#. In the context of time series of phases, quasistation
segments show bounded phase relations and, thus, fo
from the definition of phase synchronization@41#.

With this background, quasistationary multivariate sign
states can be detected using conventional clustering a
rithms. Without loss of generality, we utilize aK-means clus-
ter algorithm and reformulate it in order to cope with cyc
data. Recall the explicit form ofK-means clustering as de
scribed, e.g., in Ref.@42#: major algorithmic features are th
computation of mean values and distances between
points. For nonperiodic data, variants of Euclidean distan
e.g., Mahalanobis or city-block distances@43#, are commonly
used for distance computation and mean values are d
mined by conventional averaging. These apparently sim
computations can be used as long as the corresponding
logical space is a plane and, accordingly, its metric is flat
contrast, for cyclic data the topological space is a tor
whoseN-dimensional geometrical realization is its embe
ding in R N11, i.e., for N52 the torus looks like the well-
known doughnut. There, the shortest connection betw
two points is found on geodesics and distances have to
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computed by solving the corresponding Euler-Lagran
equations. For curved metrics, however, solving the Eu
Lagrange equations becomes fairly difficult, in particular,
largeN and/or for many point couples.

Again, irrespective of the explicit algorithm one uses
cluster the data one has to face the problem of compu
distances between cyclic data. Fortunately, before utiliz
rather costly solutions of Euler-Lagrange equations, so
geometrical aspects readily help to find much simpler al
natives. Indeed, there exists a flatN-torus, whose geodesic
are straight lines. Thus, with a covering map that reads

q:R N→R N/Z N;T N

every geodesic inR N projects to a geodesic on theN-torus
T N @44# as illustrated in Fig. 1. In consequence, distances
T N can be computed as Euclidean distances inR N at least
when considering specific rules. Suppose we have arbit
points denoted byP,QiPR N and their counterparts on th
N-torus referred to asP8,Q8PT N. The map introduced
above then readsP85q(P),Q85q(Qi) and, more specifi-
cally, we can determine the distance betweenP8 andQ8 as

d~P8,Q8!5min
i

@PQi #,

••• refers to Euclidean distances. In more physical terms,
correct Qi is located in a cuboid of mediatrices aroundP
~dotted line in Fig. 1! analogous to the calculation of Bril
louin zones in solid state physics. Interestingly, theN-torus
can be expressed as the~geometrical! product ofN circles
S 1, i.e., T N;S 13•••3S 1 (N times!. Consequently, the
distance computation can be split into independent ones
component, each reflecting a circle. Distances, mean val
variances, etc., on a circle, however, are well documente
that, in sum, the distance between two data pointsP8,Q8 in
a set ofN dimensional phasic data obeys conventional ru
of circular statistics—see, e.g., Ref.@45#.

For our specific problem this geometrical aspect impl
that for every given dataset$qi% of N phase angles, each o
which containsi 51, . . . ,T data points~or time steps!, i.e.,
qi5(f1

( i ) , . . . ,fN
( i )) t, distances between two arbitrary da

points can be computed as follows:

d~qi ,qj !5A(
k51

N

dk
2, ~1a!
9-2
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DETECTION OF MUTUAL PHASE SYNCHRONIZATION . . . PHYSICAL REVIEW E68, 036219 ~2003!
dk5p2up2u~fk
( i )2fk

( j )!mod2puu. ~1b!

As readily indicated, the means of periodic data can be c
puted for each phase angle independently by accounting
their circular properties@45#. Hence, we can finally calculat
the mean value in terms of

q̄5S f1

A

fN

D , tanfk5

(
i

sinfk
( i )

(
i

cosfk
( i )

. ~2!

Coming back to our main objective, that is, theK-means
cluster algorithm, we are now in the position to determ
cluster centers$Ck%, k51, . . . ,K. These centers refer t
points in data space for which its mean distance to a~sub-!set
of data points is minimal. Considering Eqs.~1! and ~2!, we
modify the conventionalK-means clustering so that it yield
K cluster centers of phases. Here, it seems important to
that, in general, the proper number of clusters is unknown
consequence, we define a quantity@27,28# that is motivated
by the fact that the data in question represent time series
thus, all the data are well ordered in time. Therefore, clus
can be considered as temporal segments as theK-means al-
gorithm maps data points to their nearest cluster centers@29#.
In the following, we associate a large and spatially we
separated data segment with a high cluster quality, where
small segment with overlapping clusters displays a low cl
ter quality. In more detail, for every number of clustersK,
each data pointi is associated with a cluster measureAK( i ),

AK~ i !5
1

NK
(

j PV i

@d~Cs ,qj !2d~Cn ,qj !#,

that is normalized by the factorNK5( i 51
T AK( i ). Here,Cn

andCs denote the nearest and the second-nearest cluster
ter of data pointi, respectively.V i represents a subset o
members of the cluster to which data pointi is associated.
That is, the dataset is partitioned into distinct subsetsV i
reflecting consecutive time segments each or, in turn,
every number of clustersK the subsetsV i represent consecu
tive time segments@28#. As mentioned before, the optima
number of clusters is unknown resulting in an uncertai
about a proper choice ofK. To minimize this uncertainty we
follow a statistical approach and average different clus
measures with increasingK. This procedure yields the so
called cluster quality measure

p~ i !5
Ā~ i !

A with Ā~ i !5
1

R21 (
K52

R

AK~ i !

with A5( i 51
T Ā( i ) and valueR reflecting the maximum

number of clustersR. Indeed, an increasing number of clu
ters K yields an increasing number of subsetsV i and, sub-
sequently, it diminishes the cluster measuresAK( i ). In other
words, the quality measurep( i ) converges. Notice that, in
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general, an optimal value of the upper boundR depends on
the real number of clusters in the data butR is usually in the
range of tens.

In order to compare cluster qualities across differe
datasets, we further introduce a reference system by rand
izing the examined dataset with respect to its temporal or
and reapply the clustering algorithm. This procedure is si
lar to phase randomized surrogate data. Because the s
gatesp(s)( i ) do not contain any temporal structure they c
be used to normalize the original valuesp( i ), see also Ref.
@28# for more details. Thus, we define an effective cluster
measurepeff by means of

peff~ i !5max$0,p~ i !2max
j

@p(s)~ j !#%.

Anticipating the upcoming applications we realize that se
ment borders may show drastic increases and decreas
peff at their initial and final data points, respectively@27,28#.
Hence, we finally extend the analysis by computing diff
ences

Dpeff~ i !5max$0,up~ i 11!2p~ i !u

2max
j

@ up(s)~ j 11!2p(s)~ j !u#%

revealing significant peaks at segment borders.

B. Definition of phase

When studying time series, one typically includes soma
priori knowledge or expectation about the underlying d
namical system. Investigating phase-synchronization effe
in particular, thisa priori knowledge comes into play whe
defining the phase of interest~see, e.g., Ref.@41#!. In many
cases, however, such knowledge is simply not available
that general phase definitions have to be considered. H
we apply the Hilbert transform with which the phaseF(t) of
a real signals(t) can be defined via its corresponding an
lytical signal s̃(t), see, e.g., Ref.@46#:

s̃~ t !5s~ t !1 iH ~ t !, ~3a!

H~ t !5
1

p
PVE

2`

` s~t!

t2t
dt, ~3b!

F~ t !5arctan$H~ t !/s~ t !%. ~3c!

The integral in Eq.~3b! refers to the Cauchy principal value
The Hilbert phase is widely used for studying phase synch
nization in both simulated and experimental data@17,21–
23,41,47#, as it provides a phase measure that explicitly a
instantaneously depends on time. Notice, however, that
physical interpretations this phase definition is only adeq
for frequency band-limited data@48#, i.e., limited variations
of Poincare´ return times. For instance, dynamics of chao
systems exhibit a wide range of temporal scales. Hence,
bert phases of chaotic data are only valid for chaotic syste
whose parameters guarantee reduced variations of
scales.
9-3
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III. APPLICATIONS

A. Simulated ensemble phase dynamics

First, we illustrate our method by use of the followin
stochastic dynamical system:

dfk

dt
52sinfk2b sin 2fk1A2QGk , ~4!

wherek51, . . . ,N. The valuesfk5fk(t) represent phase
that evolve along the gradient of a potentialV(fk)5
2cosfk2(b/2)cos 2fk ~Fig. 2!. Obviously, this potential
prescribes a pitchfork bifurcation when changing the con
parameterb. Additionally, the phases are individually sub
jected to additive Gaussian noise, for which we assu
^Gk(t)&50 and ^Gk(t)G l(t8)&52dkld(t2t8). For the sake
of brevity, we abstain from a detailed discussion of this d
namics, but rather refer to the literature listed below. To m
tivate its use, however, note that this system is one of
minimal mathematical forms that allows for nontrivial sc
narios of multivariate phase locking. As such, the poten
terms on the right hand side are frequently used to mo
bistable phase dynamics as being found, for instance
motor-behavior tasks@49#. That is, dependent on the relativ
values of the included parametersb andQ and dependent on
its dimensionalityN, this systems shows various forms
phase locking and/or bifurcation patterns.

To begin with, we discuss the univariate case by choos
N51. The dynamics reaches the vicinity of a certain pot
tial minimum depending on the value ofb. The width of the
distribution around that minimum is given by the fluctuati
strengthQ. To change the location of the minimum, we su
sequently vary the~control-!parameterb inducing a pitch-
fork bifurcation~cf. Fig. 2 and see, e.g., Refs.@49,50#!. Note

FIG. 2. PotentialV(F) with 2]V/]f52sinf2b sin 2f @cf.
Eq. ~4!# for different parametersb. States atf56p are unstable
for b,0.25, whereasf50 is unstable forb,20.25
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that in the following, we refer to a simulated solution of E
~4! as a trial being obtained by decreasingb from 1 to21 in
500 equidistant steps. At each step the system relaxes
1000 integrations and the final one is stored. Hence,
dataset contains only 500 points although the simulat
comprises 50031000 iterations. Put differently, we study th
stochastic dynamics during a quasistatic variation of the c
trol parameterb.

In Fig. 3, two simulated trials and the corresponding clu
tering results are shown forQ50.05 andQ50.15, respec-
tively. In both cases, the initial phase angles weref(0)
5p. The top panel displays the simulated data sets w
phase switches at aboutb50.35 ~thick line! and b50.9
~thin line! to a value aroundf50. The corresponding clus
ter quality measure~second row from top! exhibits rapid de-
creases at the corresponding values ofb. Up to b'20.25
the phases remain within the immediate vicinity off50,
which is followed by increasing fluctuations at both noi
levels and subsequent steady statesf0Þ0 ~cf. also Fig. 2!.
Especially for Q50.05, the latter change betweenb5
20.25 andb520.55 is reflected by rapid variations of th
clustering measurepeff(b). The final increase marks the bo
der of the last data cluster@51# coinciding with the final
phase variation. Although forQ50.15 significant jumps in
peff(b) do not occur—here because of the large no
level—a short resting state is detected for the intervalbP
@20.6;20.95#. In fact, a closer look at Fig. 2 helps to ex
plain the fluctuations aroundf50 for b<20.25: the poten-
tial minimum atf50 vanishes and turns into a~local! maxi-
mum. These qualitative changes can also be estimated b
clear peaks in the corresponding differential cluster qua
measureDpeff that is displayed in the two bottom rows o
Fig. 3.

Clustering results for multivariate data (N550) with Q
50.05 are depicted in Fig. 4. Betweenb51.0 and b
50.77, all the phase angles stay close to their initial val

FIG. 3. Trials and clustering results for a single phase varia
and two different noise levelsQ. All the data are plotted with re-
spect to the parameterb. The top panel presents the analyzed d
and the middle panel displays the effective cluster quality meas
The two bottom panels contain the absolute value of the effec
differential cluster quality measure. The unit of cluster quality me
sures is 1%.
9-4
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f5p followed by 6p switches, i.e.,f5p→f50 or f
5p→f52p. Transitions occur aroundb50.5, as can be
determined via the cluster quality measure.peff is maximal in
the intervalbP@1.0;0.77# and decreases untilb reaches 0.3
with a maximal slope atb'0.5. In line, the differential clus-
ter quality measureDpeff(b) ~Fig. 4, bottom row! has peaks
in the transition regions. Actually, forb,0.25 only a subtle
increase ofpeff can be observed nearb520.5, which, how-
ever, does not show any nonvanishing differential clus
quality measureDpeff(b). Hence, we cannot distinguish th
latter case from a random increase as might also be expla
by the large noise strength, the small slope of the underly
potential, or the small distance between its minima. Not
that the figures of clustering results illustrate the spatiote
poral dynamics of data: quasistationary data with a la
point density in data space reveal large values ofpeff ,
whereas transient and widely distributed data show low v
ues. Only fast transitions between quasistationary data
ments exhibit large peaks ofDpeff implying thatDpeff repre-
sents a transition likelihood to phase-synchronized state

Underscoring its statistical relevance, we further exam
an ensemble of 100 trials, each of which is computed w
the aforementioned parameters. A subsequent applicatio
the clustering method yields 100 time series of cluster qu
ity measures and corresponding differentials, which will
averaged. Figure 5 displays plateaus of this mean clu
quality measure at segmentsS1 ,S2, andS3 ~top panel! and
peaks ofDpeff ~bottom panel! reflect transition regionsS1
2S2 and S22S3. We would like to point out that the non
vanishing peak widths reflect the duration of the transit
regions and, at the same token, the uncertainty of segm
borders. In more detail, we findS15@1.0;0.6#, S25@0.4;
20.4#, andS35@20.6;21.0#. The exact statistical asses
ment of our results, e.g., the estimation of peak variance
beyond the scope of the present paper but will be addre
in future work.

FIG. 4. Multidimensional data trial and clustering results f
N550 and noise levelQ50.05. All the data are plotted with re
spect to the parameterb. The top panel displays the data ofN phase
variables. The middle and bottom panels present the effective c
ter quality measure and their corresponding differentials. The
of cluster quality measures is 1%.
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This study shows mutual synchronization of uncoup
systems as being expected in the case of identical sys
that have steady solutions. The result reveals the rela
between the degree of synchronization~here in identical sys-
tems! and the stability properties of the participating su
systems: as soon as the transition rate within a system is
~e.g., close to instabilities! the ~mutual! synchronization is
low, whereas common steady states show high synchron
tion.

B. Weakly coupled Lorenz systems with external driving force

Evaluating our method with more irregular multivaria
data, we continue with studying phase signals being obtai
from chaotic data. Note that phase synchronization alw
occurs with respect to a phase reference. In general, h
ever, multivariate signals do not serve as a unique refere
and, therefore, we examine datasets including all couple
phase differences~this section! and phase differences o
nearest neighbors~Sec. III C!. The system in question is
ring of five diffusion-coupled Lorenz systems

ẋi5210xi110yi , ~5a!

ẏi528xi2yi2xizi1C~yi 111yi 2122yi !, ~5b!

żi5xiyi2
8
3 zi1F~ t !, i 51, . . . ,5, ~5c!

driven by an external forceF(t)510 sin(8.3t). This system
yields the so-called imperfect phase synchronization for v
ishing coupling@13#, i.e., the phase of every single attract
drifts in short segments by multiples of 2p relative to the
external forceF(t). This drifting is caused by the broa
range of intrinsic scales of the Lorenz system.

We realized numerical solutions of Eq.~5! by applying an
Euler-forward algorithm with step size 0.01, where un
formly distributed initial values„xi(0),yi(0),zi(0)…5(8.4

s-
it

FIG. 5. Averaged clustering results forN550, noise levelQ
50.05 and 100 trials. The data are plotted with respect to the
rameterb. The top panel displays the effective cluster quality me
sure and the bottom panel presents the corresponding differen
The unit of cluster quality measures is 1%.
9-5
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HUTT, DAFFERTSHOFER, AND STEINMETZ PHYSICAL REVIEW E68, 036219 ~2003!
1Gx,8.41Gy,401Gz) with Gx,y,zP@20.5;0.5# guaranteed a
stable integration ofT515 000 time steps.

Figure 6, top panel, displays time series of ten Hilb
phase pairsDF i j 5F i2F j of amplitudes$yi% in the case of
vanishing coupling (C50) showing the aforementione
characteristic phase slips. Since the individual phases dri
random points in time, no mutual phase synchronization
present. This is reflected by the absence of any promin
structure of the corresponding cluster quality measure~Fig.
6, bottom panel!. Because of similar initial values, the fiv
Lorenz systems synchronize briefly at the beginning of
simulation, after which the cluster quality measure drops r
idly ~cf. inset of Fig. 6, bottom panel!. To examine the influ-
ence of coupling strengthC, we further computed average
of 15 trials~Fig. 7! for various values ofC. By increasing the
coupling strength, phase synchronization increases
spreads in time. Hence, increased coupling stabilizes
phase relation of attractors, at least for a finite time, and
averaged differential cluster quality measures~Fig. 7, right
hand side! show sharp peaks and gaps.

Indeed, more detailed investigations of single trials sh
that phase drifts relative to the external stimulus appea
remain present forCÞ0. That is, within a finite time win-
dow, phases of the attractors still appear toclimb a staircase
of phases mutuallyby multiples of 2p. However, they align
only for a certain time, after which this mutual phase sy
chronization disappears.

C. Strongly coupled Lorenz systems with strong external noise

As already mentioned in the preceding section, we furt
examine phase differences to the nearest neighbors—
we consider the case of a chaotic system defined as a rin
eight diffusion-coupled Lorenz systems, that is, fori
51, . . . ,8 wehave

ẋi5210xi110yi1Gx , ~6a!

FIG. 6. Time series of phase differences and obtained clu
quality measure for uncoupled Lorenz systems driven by an ex
nal force. Insets zoom into smaller time windows to enlarge deta
The unit of cluster quality measures is 1%.
03621
t

at
is
nt

e
-

nd
e
e

to

-

r
w,
of

ẏi528xi2yi2xizi13.0•~yi 111yi 2122yi !1Gy ,
~6b!

żi5xiyi2
8
3 zi1Gz , ~6c!

with strong external noiseGx,y,zP@24.0;4.0# subject to a
uniform distribution. Initial conditions and integration proc
dure are identical to the previous study. Recall that we
amine phase differences to the nearest neighbors, w
yields an eight-dimensional time series of phases.

Concentrating on phases from the amplitudes$yi%, Fig. 8
shows three single time series of phase differencesDF i j . In
trials 2 and 3, we find early transitions to fairly stationa
phase relations, contrasting trial 20, which exhibits seve
switches of multiples of 2p. This differential behavior is
caused by both different initial conditions and external noi
The corresponding cluster quality measures for all trials c
firm these findings by transients and plateaus in the acc
ing time segments. We point out that the low values ofpeff
indicate either large intersecting clusters or clusters of o
few aggregated data, both reflecting weak phase synchr
zation. In order to decide whether there is coincidental ph
synchronization in trials, we computed an average clus
quality measure over 20 trials~Fig. 8, bottom panel! that
exhibits several peaks and troughs. For instance, both f
t580 to t590 and fort.90, the plateaus indicate coinc
dental mutual phase synchronization across trials.

Next, we examined the phase-synchronized state in m
detail. Figure 9 shows signal amplitudes of all trials fro
Fig. 8 as space-time plots, which reveal alternations betw
phase synchronization and desynchronization. For insta
in trial 2, one can find final steady-state oscillations w
vanishing phase lags between couples 1-8, 2-7, 3-6, and

er
r-

s.

FIG. 7. Results for different coupling strengthsC in coupled
Lorenz systems driven by external force. The left column conta
cluster quality measures averaged over 15 trials and the right
shows their corresponding differentials. The unit of cluster qua
measures is 1%.
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FIG. 8. Time series of phase differences o
tained from amplitudes$yi% and corresponding
cluster quality measures in the case of strong
coupled Lorenz systems. Plot insets in the rig
column focus upon time windows from Fig. 9 t
reveal more details. The bottom panel shows a
eraged cluster quality measures obtained fro
further 20 trials. The unit of cluster quality mea
sures is 1%.
ree
ld

sive

c-
0,
tripe
r to

nary

f
ots
oxi-
FIG. 9. Space-time plots of amplitudes$yi% of trials in

Fig. 8.
03621
symmetric to points between 4,5 and 1,8. The noise-f
variant of system~6! possesses an invariant linear manifo
$x51 i5x42 i ,y51 i5y42 i ,z51 i5z42 i ,i 51, . . . ,4%, and
three rotated copies thereof corresponding to the succes
pairs of nodes~cf. @39#! and containing locally asymptotic
stable limit cycles. A similar spatiotemporal symmetry o
curs in trial 3, however, shifted by one element. In trial 2
quasistationary phases constant in space alternate with s
patterns, whereas no symmetric pattern is present simila
the ones in trials 2 and 3. In all the trials, plateaus ofpeff
show good accordance in time to segments of quasistatio

FIG. 10. Single amplitudes$yi% and corresponding phases o
trial 2 in Fig. 8. For instance, plots of amplitudes marked by d
and squares in the top panel correspond to curves with appr
mately zero phase lag shown in the bottom panel.
9-7
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phase synchronization~cf. insets in Fig. 8!. Figure 10 depicts
amplitudes and their corresponding phase differen
DF ( i 11)i of the phase-synchronized state and illustrates
observed mirror symmetry. Here, the plots indicate the w
known nonsinusoidal behavior in amplitudes$yi% yielding
large fluctuations of the corresponding phases and, su
quently, weak phase synchronization.

Different results can be obtained when considering am
tudes$zi% in Eq. ~6!. Figure 11 shows time series of corr
sponding phases in two trials~left panels! that reveal tran-
sients on different time scales and final stationary ph
differences. Apparently, these differences in time scales
sult from different initial conditions and the applied extern
noise.

Finally, we computed the cluster quality measures
both trials ~right panels! and the average over 20 furthe
trials ~bottom panels!. For the single trials, the cluster qualit
measures reveal transients and plateaus in accordance
the time series of phase differences. The average clu
quality measure increases from low values ofpeff and satu-
rates at aboutt530 ~bottom panel, left hand side!. Interest-
ingly, these clear structures contrast with the alternating o
from the amplitudes$yi%. In Fig. 12 we show the amplitude
and the corresponding phase pairs of the phase-synchron
state. The phase relations change periodically within a
row phase band implying that the data cover a bounded
gion in data space and, hence, represent~by definition! a
phase-synchronized state@41#.

D. Comparison to bivariate synchronization index

At last, we compare our method with a synchronizati
index being discussed by Rosenblumet al. @36#. In case of
1:1 phase locking, Rosenblum and co-workers proposed
index that represents the circular standard deviation of ph
differences$DF i j (t)% and that reads

FIG. 11. Time series of phase differences obtained from am
tudes $zi% and corresponding cluster quality measure in case
strongly coupled Lorenz systems. The bottom panel shows aver
cluster quality measures obtained from further 20 trials.
03621
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g i j ~ t !5A^cosDF i j ~ t !&21^sinDF i j ~ t !&2 ~7!

with i , j 51, . . . ,N. ^•••& denotes an average over a tim
window @ t2DT/2;t1DT/2#. Due to definition~7!, large val-
ues ofg i j (t) indicate a narrow-peaked unimodal distributio
of phase differences, whereasg i j (t)→0 reflects a uniform
distribution. Notice that, since this synchronization ind
only applies to bivariate data, that is, to single phase diff
ences, we extend it by computing the simple mean synch
nization index over all the phase differences of near
neighbors

i-
f
ed

FIG. 12. Single amplitudes$zi% and corresponding phases o
trial 1 in Fig. 11. For instance, plots of amplitudes marked by d
and dashes in the left panel correspond to curves with phase l
and 2p shown in the right panel.

FIG. 13. Bivariate phase-synchronization indices of amplitud
$yi% in Fig. 8 for different trials and values ofDT. Dotted lines,
eight indicesg ( i 11)i(t); bold solid lines, indexg0(t).
9-8
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g0~ t !5
1

N (
i 51

N

g ( i 11)i~ t !, g (N11)N5g1N .

Applying this form to phases of the amplitudes$yi% from
the previous study yields eight time series of synchroniza
indices shown in Fig. 13 for two different trials and tw
different time spansDT, respectively. We find large value
and troughs ofg0(t) in time segments similar to our result
while single indicesg i j (t) diverge from each other. For in
stance, in trial 2 we observeg54,g18'1 ~Fig. 13, left pan-
els!, whereas values ofg87 reach a minimum of 0.6 at abou
t513. In contrast, our method~Fig. 9! reveals mutual phas
synchronization beyondt.7.3.

Since the bivariate synchronization index does acco
for mutual increases and decreases of the single circular s
dard deviations which also represents phase-locked beha
it entirely neglects the spatiotemporal structure of the d
and, thus, fails in detecting mutual phase synchronizat
Allowing for a direct comparison with our studies, we final
computed synchronization indices averaged over trials. F
ure 14 shows results for two values ofDT indicating strong
synchronization at all times. These findings contrast
aforementioned results, which show peaks and distinct
ders of phase-synchronized segments.

FIG. 14. Averaged bivariate phase-synchronization indices
amplitudes$yi% in Fig. 8 for different values ofDT. Dotted lines,
eight averaged indicesg ( i 11)i(t); bold solid lines, averaged inde
g0(t).
ce
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IV. DISCUSSION AND CONCLUSION

We examined the structure of phasic data in hig
dimensional spaces. In general, data clusters represent p
synchronized states so that members of clusters build t
segments of phase-synchronized states. Our method acc
for the spatio-temporal structure of data and is invariant
wards constant offsets so that it seems reasonable to ave
clustering results over trials. In the case of small trial nu
bers, the average cluster quality measure reflects coinci
phase synchronization across the trial ensemble and, th
fore, it allows for qualitative investigations of sets of chao
systems. For large numbers of realizations, the differen
cluster quality measure can be used to determine the di
bution of transients between phase-synchronized segme

Classically, bivariate synchronization indices facilitate t
detection of phase synchronization between single ph
couples and help to estimate properties of their statist
distribution in time. The corresponding time series of indic
reveal smooth transients subject to the applied time wind
With these indices one extracts temporal segments of qua
tationary phase synchronization solely based on individ
phase differences. In contrast, our method does not res
phase synchronization in single phase couples, but rathe
tects mutual phase synchronization across all phases.
aspect is particularly important in spatially extended s
tems, which exhibit strong correlation in space, i.e., w
huge sets of recorded time series. In addition, our met
yields sharp borders of segments, and, hence, it allows
extracting initial and final time points of mutual phase sy
chronization.

In summary, the present work describes a segmenta
index for mutual phase synchronization in multivariate no
stationary signals. With this segmentation index we are a
to detect both the time segments and the duration of tr
sients irrespective of the specific type of spatial synchro
zation patterns. Applications to stochastic phasic data
time series from coupled chaotic systems reveal the propo
index being able to capture the spatiotemporal structure
data.
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