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Detection of mutual phase synchronization in multivariate signals
and application to phase ensembles and chaotic data
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This work presents a method for the detection of mutual phase synchronization in nonstationary time series.
We show how the application of a cluster algorithm that considers spatiotemporal structures of data follows
from the general condition of phase-synchronized data. In view of the topology of phasic data, we reformulate
the K-means cluster algorithm on a flat torus and apply a segmentation index derived in an earligAwork
Hutt and H. Riedel, Physica 77, 203 (2003]. This index is extended by means of averaging in order to
reflect phase synchronization in ensembles of multivariate time series. The method is illustrated using simu-
lated multivariate phase dynamics and arrays of chaotic systems, in which temporal segments of phase-
synchronized states are registered. A comparison with results from an existing bivariate synchronization index
reveals major advantages of our method.
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[. INTRODUCTION detect the resulting segments in time, several works investi-
gated global amplitude coherence in nonstationary multivari-

To gain insight into the underlying dynamical mecha- ate time serief8,24—-29. Indeed, these phenomena typically
nisms, the temporal activity in spatially extended system®xhibit both a single mutual increase and a mutual decrease
needs to be measured. Experimental studies aiming for thef amplitudes, that is, they do not oscillate in time. With
extraction of spatiotemporal activity usually apply sets ofrespect to synchronization, however, this behavior is equiva-
spatially distributed detectors that yield multivariate time sedent to mutual phase synchronization if all amplitudes are in
ries, as can be appreciated in several studies in neuroscienpgbhase. Since phase synchronization plays an important role
[1-3], chemistry{4], meteorology5], and solid state physics in complex system$4,17,18,30, we put all the previously
[6,7]. Extracting and understanding of the underpinning dy-isted phenomena in this, more general context and treat the
namics in a generality is far from trivial. For instance, in the detection of quasistationary mutual phase synchronization
case of thermodynamically open systems, empirical datésee, e.g., Ref§17,31-33).
typically contain various time scales, which complicates the Starting with time series of amplitudes, corresponding
modeling of data, as many models basically cover rather natime-dependent phase angles may be obtained from a wave-
row bands of time scales. However, data recorded in certaitet analysis, via the Gabor transformation, or via the Hilbert
open systems might be split into temporal sequences of fastansformation. Widely used indices farm phase synchro-
transients on the one hand and time windows of narrow-bandization are the circular variance of phases and tests on sta-
time scales on the other. Such phenomena are prominent, fastical distributions of phasds81,34—31. In fact, all these
example, in cognitive neurosciendg], hydrodynamics methods apply to bivariate data, whereas in the present study
[9,10], lasers physic$11,17, or in various chaotic systems we treat multivariate data. For this kind of setups one can
[13,14]. find several studies considering averaged phE3&85 but,

A general framework addressing this issue is given byunfortunately, they commonly neglect eventually heteroge-
concepts of coherence or synchronization. In recent yearsieous phase distributions. To the best of our knowledge, a
large achievements led to conceptually new approaches teliable detection method for mutual phase synchronization
biological system§15—18 or, more generically, in networks in multivariate data has not been derived yet. Notice that, in
of coupled oscillatory systenjd9—-23. A system’s behavior general, phase synchronization may occur in heterogeneous
that alternates in time as mentioned before, i.e., fast trarphase distributionge.g., Refs[38—-40). Therefore, we will
sients versus narrow-band time scales, can be generalized discuss a phase-synchronization index, which incorporates
alternations between transients and synchronized states. Both the time dependance and the distribution of phases. In

more detail, we will introduce a clustering method to detect
quasistationary phase synchronization. As an extension of

*Electronic address: hutt@wias-berlin.de recent workg 28,29, this method will allow for the segmen-
"Electronic address: marlow@fbw.vu.nl tation of multivariate data by considering the spatio-temporal
*Electronic address: u.steinmetz@mis.mpg.de data structure comprising a cluster algorithm for phasic data
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as well as an average segmentation index for ensembles obmputed by solving the corresponding Euler-Lagrange
time series. In particular, we will show in detail that the latterequations. For curved metrics, however, solving the Euler-
step reveals phase-synchronization properties of systems itagrange equations becomes fairly difficult, in particular, for
respective of specific realizations. Applications to nonstalargeN and/or for many point couples.
tionary data obtained from both a stochastic model network Again, irrespective of the explicit algorithm one uses to
and arrays of coupled Lorenz systems serve to illustrate owluster the data one has to face the problem of computing
method. distances between cyclic data. Fortunately, before utilizing
The paper is structured as follows. In Sec. Il, we discussather costly solutions of Euler-Lagrange equations, some
the topology of multivariate phasic data and derive majorgeometrical aspects readily help to find much simpler alter-
elements of a specific form of th&means cluster algorithm natives. Indeed, there exists a fidttorus, whose geodesics
as it will be used here. Applications to simulated data followare straight lines. Thus, with a covering map that reads

in Sec. lll. Finally, we contrast our method to an existing N NN
bivariate synchronization index utilizing simulated déSec. q:RN-RN ZN~TN
D).

every geodesic irR N projects to a geodesic on titorus

TN [44] as illustrated in Fig. 1. In consequence, distances on
Il. METHODS TN can be computed as Euclidean distance®Rit at least
A. Clustering when considering specific rules. Suppose we have arbitrary
points denoted by,Q; e RN and their counterparts on the

To begin with, we recast multivariate signals as a tempo-N_torus referred to a’,Q' e 7V. The map introduced

ral sequence of data points in high-dimensional data spacebove then read®’=q(P),Q’ =q(Q;) and, more specifi-

because in this picture quasistationary signals exhibit smaff . . ,
variations in data space contrasting large changes durin%a"y’ we can determine the distance betwéérandQ" as

transient behavior. That is, small data variations result in
high data point densities and, consequently, quasistationary
signal states become visible as point clusters in data space
[29]. In the context of time series of phases, quasistationary " refers to Euclidean distances. In more physical terms, the
segments show bounded phase relations and, thus, follogyrect . is located in a cuboid of mediatrices arouRd
from the definition of phase synchronizatipfll. ~  (qotted line in Fig. 1 analogous to the calculation of Bril-
With this background, quasistationary multivariate signali, in zones in solid state physics. Interestingly, Norus
states can be detected using conventional clustering alg@yn pe expressed as thgeometrical product ofN circles
rithms. Without loss of generality, we utilizelameans clus- g1 ;o 7N_gly .. xSl (N times. Consequently, the
ter algorithm and refqrmulate it in order to cope with cyclic distance computation can be split into independent ones per
data. Recall the explicit form oK-means clustering as de- ;1 nonent, each reflecting a circle. Distances, mean values,
scribed, e.g., in Ref42]: major algorithmic features are the 5iances; etc., on a circle, however, are well documented so
computation of mean values and distances between da{ﬁat in sum, the distance between two data paft€’ in

points. For nonpgriodiq data, var.iants of Euclidean distancesa set ofN dimensional phasic data obeys conventional rules
e.g., Mahalanobis or city-block distandds], are commonly of circular statistics—see, e.g., RE45]

uged for distance.computation' and mean values are .deter- For our specific problem this geometrical aspect implies
mined by conventional averaging. These apparently S'mpl'ﬁwat for every given datasétj} of N phase angles, each of

computations can be used as long as the corresponding tORQhich containg = 1 T data points(or time steps i.e

logical space is a plane and, accordingly, its metric is flat. In_ _ (i (Nt A ;
contrast, for cyclic data the topological space is a torusq' (417, ....¢y), distances between two arbitrary data

whoseN-dimensional geometrical realization is its embed-poInts can be computed as follows:
ding in RN*1, i.e., forN=2 the torus looks like the well- N
known doughnut. There, the shortest connection between d(q,qp) = /kgl a2, (1a

two points is found on geodesics and distances have to be

d(P’,Q")=min[PQ],
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d=7—| 7= |(4) — ) mod2r]]. (1p)  general, an optimal value of the upper botRdiepends on
the real number of clusters in the data Bus usually in the

As readily indicated, the means of periodic data can be com@ng€ Of tens.

puted for each phase angle independently by accounting for In order to compare cluster qualities across different
datasets, we further introduce a reference system by random-

their circular propertief45]. Hence, we can finally calculate
the mean value in terms of izing the examined datz_iset Wlth_ respect to its temporgl o_rd_er
and reapply the clustering algorithm. This procedure is simi-
o _ lar to phase randomized surrogate data. Because the surro-
b1 2 sin ¢(k') gatesp®(i) do not. contain any temporall structure they can
—| tan¢7= ! @) be used to normalize the original valupé), see also Ref.
q |’ K 0 ' [28] for more details. Thus, we define an effective clustering
N Z COSehy measurey by means of

i)=max0,p(i)—ma{p®(j)]}.
Coming back to our main objective, that is, tkemeans Pet(1) X0p(h) i APy

cluster algorithm, we are now in the position to determine
cluster centers{C}, k=1,... K. These centers refer to Anticipating the upcoming applications we realize that seg-
points in data space for which its mean distance (su)set ~ment borders may show drastic increases and decreases of
of data points is minimal. Considering Eq4) and(2), we  Pe at their initial and final data points, respectivgélr,2§.
modify the conventionaK-means clustering so that it yields Hence, we finally extend the analysis by computing differ-

K cluster centers of phases. Here, it seems important to noghces

that, in general, the proper number of clusters is unknown. In ) _ )

consequence, we define a quanfi®y,2§ that is motivated Apes(i)=max0,|p(i +1)—p(i)]

by the fact that the data in question represent time series and, —max{|[p®(j+1)—pO(j)|1}

thus, all the data are well ordered in time. Therefore, clusters i

can be considered as temporal segments aKiheans al-

gorithm maps data points to their nearest cluster cef@djs  revealing significant peaks at segment borders.

In the following, we associate a large and spatially well-

separated data segment with a high cluster quality, whereas a B. Definition of phase

small segment with overlapping clusters displays a low clus-
ter quality. In more detail, for every number of clustés
each data pointis associated with a cluster measég(i),

When studying time series, one typically includes sane
priori knowledge or expectation about the underlying dy-
namical system. Investigating phase-synchronization effects,
in particular, thisa priori knowledge comes into play when
defining the phase of intere&ee, e.g., Ref41]). In many
A= N JE [d(Cs.q) —d(Co )], cases, however, such knowledge is simply not available so
that general phase definitions have to be considered. Here,

that is normalized by the factox=3_ 1AK(|) Here, C, we apply the Hilbert transform with which the phabét) of
andC, denote the nearest and the second-nearest cluster ceéhreal signals(t) can be defined via its corresponding ana-
ter of data pointi, respectively.Q); represents a subset of lytical signals(t), see, e.g., Ref46]:
members of the cluster to which data point associated. ~
That is, the dataset is partitioned into distinct sub<@ts s(t)=s(t) +iH (1), (33
reflecting consecutive time segments each or, in turn, for
E://:ri/irgl;n;t;er of clustells the sub_setéli represent consecu- H(t) = _PVJ' er (3b)
gment$28]. As mentioned before, the optimal o t—
number of clusters is unknown resulting in an uncertainty
about a proper choice ¢f. To minimize this uncertainty we d(t)=arctafH(t)/s(t)}. (30)
follow a statistical approach and average different cluster
measures with increasini§. This procedure yields the so- The integral in Eq(3b) refers to the Cauchy principal value.
called cluster quality measure The Hilbert phase is widely used for studying phase synchro-
nization in both simulated and experimental dgid,21-
Ai) 23,41,47, as it provides a phase measure that explicitly and
p(i)= e with A(|)— E Ax(i) instantaneously depends on time. Notice, however, that for
physical interpretations this phase definition is only adequat
for frequency band-limited datat8], i.e., limited variations
with A=3T JA(i) and valueR reflecting the maximum of Poincafereturn times. For instance, dynamics of chaotic
number of cluster®. Indeed, an increasing number of clus- systems exhibit a wide range of temporal scales. Hence, Hil-
tersK yields an increasing number of subséls and, sub-  bert phases of chaotic data are only valid for chaotic systems,
sequently, it diminishes the cluster measub@$i). In other  whose parameters guarantee reduced variations of time
words, the quality measung(i) converges. Notice that, in scales.
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The two bottom panels contain the absolute value of the effective
B=-0.25 p=1.0 differential cluster quality measure. The unit of cluster quality mea-

i 0,
FIG. 2. PotentiaV(®) with — aV/dh=—sing—Bsin2p [cf.  Sores 1S 1%.
Eq. (4)] for different parameterg. States atp= *+ 7 are unstable

for 8<0.25, whereag)=0 is unstable fo3<—0.25 that in the following, we refer to a simulated solution of Eq.
(4) as a trial being obtained by decreas@drom 1 to—1 in
Ill. APPLICATIONS 500 equidistant steps. At each step the system relaxes for

1000 integrations and the final one is stored. Hence, the
dataset contains only 500 points although the simulation
First, we illustrate our method by use of the following comprises 508 1000 iterations. Put differently, we study the
stochastic dynamical system: stochastic dynamics during a quasistatic variation of the con-

trol parametelB.

A. Simulated ensemble phase dynamics

dé . In Fig. 3, two simulated trials and the corresponding clus-
ar - Sindkm Bsin2¢t V2Qry, @ tering results are shown f@@=0.05 andQ=0.15, respec-
tively. In both cases, the initial phase angles wer€))
wherek=1, ... N. The valuesp,= ¢,(t) represent phases =. The top panel displays the simulated data sets with
that evolve along the gradient of a potentisl(¢,)=  Phase switches at aboui=0.35 (thick line) and 5=0.9

—cosey—(B/2)cos 2, (Fig. 2). Obviously, this potential (thin line) to a value arounds=0. The corresponding clus-
prescribes a pitchfork bifurcation when changing the controter quality measurésecond row from topexhibits rapid de-
parameterd. Additionally, the phases are individually sub- creases at the corresponding valuesgofUp to g~ —0.25
jected to additive Gaussian noise, for which we assuméhe phases remain within the immediate vicinity ¢f0,

(T (1))=0 and(T'\(t)T'(t"))=26,,8(t—t'). For the sake Which is followed by increasing fluctuations at both noise
of brevity, we abstain from a detailed discussion of this dy-levels and subsequent steady statgs-0 (cf. also Fig. 2.
namics, but rather refer to the literature listed below. To mo-Especially for Q=0.05, the latter change betweegs—
tivate its use, however, note that this system is one of the-0.25 andg=—0.55 is reflected by rapid variations of the
minimal mathematical forms that allows for nontrivial sce- clustering measurpex(8). The final increase marks the bor-
narios of multivariate phase locking. As such, the potentiader of the last data clustd61] coinciding with the final
terms on the right hand side are frequently used to modgphase variation. Although fo@=0.15 significant jumps in
bistable phase dynamics as being found, for instance, ipes(8) do not occur—here because of the large noise
motor-behavior taskg49]. That is, dependent on the relative level—a short resting state is detected for the inte@al
values of the included parametgsandQ and dependent on [—0.6;—0.95]. In fact, a closer look at Fig. 2 helps to ex-
its dimensionalityN, this systems shows various forms of plain the fluctuations around=0 for 8< — 0.25: the poten-
phase locking and/or bifurcation patterns. tial minimum at¢ =0 vanishes and turns into(kbcal) maxi-

To begin with, we discuss the univariate case by choosingnum. These qualitative changes can also be estimated by the
N=1. The dynamics reaches the vicinity of a certain poten<lear peaks in the corresponding differential cluster quality
tial minimum depending on the value gf The width of the  measureApgs that is displayed in the two bottom rows of
distribution around that minimum is given by the fluctuation Fig. 3.
strengthQ. To change the location of the minimum, we sub-  Clustering results for multivariate dataN & 50) with Q
sequently vary thécontrol)parameter8 inducing a pitch- =0.05 are depicted in Fig. 4. Betweef=1.0 and 8
fork bifurcation(cf. Fig. 2 and see, e.g., Ref¢l9,50). Note  =0.77, all the phase angles stay close to their initial values
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FIG. 4. Multidimensional data trial and clustering results for ~ FIG. 5. Averaged clustering results fdt=50, noise levelQ
N=50 and noise leveQ=0.05. All the data are plotted with re- =0.05 and 100 trials. The data are plotted with respect to the pa-
spect to the paramet@:. The top panel displays the dataldphase rameters. The top panel displays the effective cluster quality mea-
variables. The middle and bottom panels present the effective clugure and the bottom panel presents the corresponding differentials.
ter quality measure and their corresponding differentials. The unitfhe unit of cluster quality measures is 1%.
of cluster quality measures is 1%.

This study shows mutual synchronization of uncoupled

¢= followed by = switches, i.e.¢p=7m—¢$=0 or ¢  Systems as being expected in the case of identical systems
=m— ¢=2m. Transitions occur aroung=0.5, as can be that have steady solutions. The result reveals the relation
determined via the cluster quality measurg; is maximal in  between the degree of synchronizatitwere in identical sys-

the intervalB €[1.0;0.77 and decreases unjil reaches 0.3 tems and the stability properties of the participating sub-
with a maximal slope g8~0.5. In line, the differential clus- systems: as soon as the transition rate within a system is high
ter quality measurd p«(8) (Fig. 4, bottom row has peaks (€.g., close to instabilitigsthe (mutua) synchronization is

in the transition regions. Actually, fg8<0.25 only a subtle low, whereas common steady states show high synchroniza-
increase 0Py can be observed ne@= —0.5, which, how-  tion.

ever, does not show any nonvanishing differential cluster

quality measuré\ pg«(8). Hence, we cannot distinguish this B. Weakly coupled Lorenz systems with external driving force
latter case from a random increase as might also be explained Evaluating our method with more irregular multivariate

by the large noise strength, the small slope of the underlyln%ata, we continue with studying phase signals being obtained

potential, or the small distance between its minima. Noticef . o

, i ; . rom chaotic data. Note that phase synchronization always
that the figures of clustering results illustrate the Spatmtembccurs with respect to a phase reference. In general. how-
poral dynamics of data: quasistationary data with a large P b - "9 '

: Lo ever, multivariate signals do not serve as a unique reference
point density in data space reveal large valuespgf,

whereas transient and widely distributed data show low val-and’ therefore, we examine datasets including all couples of
y hase differencesthis section and phase differences of

ues. Only fast transitions between quasistationary data seg- : : L
mris b rge peaks oy IMPHIG M ADuy op1e 1o e ot Lot e 21" #
sents a transition likelihood to phase-synchronized states.

Underscoring its statistical relevance, we further examine Y 10y, _
an ensemble of 100 trials, each of which is computed with Xi 106+ 10y, 53
the aforementioned parameters. A subsequent application of .
the clustering method yields 100 time series of cluster qual- Yi=28—Yi—=%zi+ C(Yis1tYi-1—2y)),  (5b)
ity measures and corresponding differentials, which will be )
averaged. Figure 5 displays plateaus of this mean cluster z=x\yi—sz+F(t), i=1,...,5, (50
quality measure at segmerf$s,S,, andS; (top panel and
peaks ofAp.s (bottom panel reflect transition region§,  driven by an external forcé(t)=10sin(8.3). This system
—S, andS,—S;. We would like to point out that the non- yields the so-called imperfect phase synchronization for van-
vanishing peak widths reflect the duration of the transitionishing coupling[13], i.e., the phase of every single attractor
regions and, at the same token, the uncertainty of segmenlfifts in short segments by multiples ofs2relative to the
borders. In more detail, we fin&,=[1.0;0.6, S,=[0.4; external forceF(t). This drifting is caused by the broad
—0.4], andS;=[—0.6;—1.0]. The exact statistical assess- range of intrinsic scales of the Lorenz system.
ment of our results, e.g., the estimation of peak variances, is We realized numerical solutions of E) by applying an
beyond the scope of the present paper but will be addressdeliler-forward algorithm with step size 0.01, where uni-
in future work. formly distributed initial values(x;(0),y;(0),z(0))=(8.4
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time t
. . , . 5 ﬂ
FIG. 6. Time series of phase differences and obtained cluster
quality measure for uncoupled Lorenz systems driven by an exter- 00 25 5 75 100
nal force. Insets zoom into smaller time windows to enlarge details. time 0 25 ,5 7.5 10
The unit of cluster quality measures is 1%. time

FIG. 7. Results for different coupling strengtlsin coupled
+T,,8.4+T,,40+T,) with T e[—0.5:0.5 guaranteed a Lorenz systems driven by external force. The left column contains
Stal:))(lye .integ)rléltion oZ1|'= 15 OC))((')y"?ime Stép’s ' cluster quality measures averaged over 15 trials and the right side

. . . . . h hei i iff ials. Th it of cl li
Figure 6, top panel, displays time series of ten Hllberts ows their corresponding differentials. The unit of cluster quality

) . ; measures is 1%.

phase paira®;; =®;— ®; of amplitudesy;} in the case of
vanishing coupling €=0) showing the aforementioned :
characteristic phase slips. Since the individual phases drift at Yi=28=Yi=Xzi+3.0 (Vi1 TYi-a=2y) + Ty, (6b)
random points in time, no mutual phase synchronization is
present. This is reflected by the absence of any prominent
structure of the corresponding cluster quality meas#ig.
6, bottom pangl Because of similar initial values, the five \yith strong external nois&, , ;e[ —4.0;4.0 subject to a
Lorenz systems synchronize briefly at the beginning of theyniform distribution. Initial conditions and integration proce-
simulation, after which the cluster quality measure drops rapgure are identical to the previous study. Recall that we ex-
idly (cf. inset of Fig. 6, bottom panelTo examine the influ-  amine phase differences to the nearest neighbors, which
ence of coupling strengtll, we further computed averages yje|ds an eight-dimensional time series of phases.
of 15 trials(Fig. 7) for various values o€. By increasing the Concentrating on phases from the amplituéies, Fig. 8
coupling strength, phase synchronization increases anghows three single time series of phase differeriods; . In
spreads in time. Hence, increased coupling stabilizes thgjas 2 and 3, we find early transitions to fairly stationary
phase relation of attractors, at least for a finite time, and thgnase relations, contrasting trial 20, which exhibits several
averaged differential cluster quality measutB®. 7, right  syjitches of multiples of 2. This differential behavior is
hand sidg show sharp peaks and gaps. _ caused by both different initial conditions and external noise.

Indeed, more detailed investigations of single trials showrpe corresponding cluster quality measures for all trials con-
that phase drifts relative to the external stimulus appear t@m these findings by transients and plateaus in the accord-
remain present fo€+#0. That is, within a finite time win- ing time segments. We point out that the low valuegf
dow, phases of the attractors still appeaciimb a staircase  gicate either large intersecting clusters or clusters of only
of phases mutuallpy multiples of 27. However, they align  few aggregated data, both reflecting weak phase synchroni-
only for a certain time, after which this mutual phase syn-;ation. In order to decide whether there is coincidental phase
chronization disappears. synchronization in trials, we computed an average cluster
quality measure over 20 triald=ig. 8, bottom panglthat
exhibits several peaks and troughs. For instance, both from
t=80 tot=90 and fort>90, the plateaus indicate coinci-

As already mentioned in the preceding section, we furthedental mutual phase synchronization across trials.
examine phase differences to the nearest neighbors—now, Next, we examined the phase-synchronized state in more
we consider the case of a chaotic system defined as a ring detail. Figure 9 shows signal amplitudes of all trials from
eight diffusion-coupled Lorenz systems, that is, for Fig. 8 as space-time plots, which reveal alternations between

zi=xyi—5z+7T,, (60

C. Strongly coupled Lorenz systems with strong external noise

=1,...,8 wehave phase synchronization and desynchronization. For instance,
) in trial 2, one can find final steady-state oscillations with
Xj=—10x;+ 10y; + Iy, (6a)  vanishing phase lags between couples 1-8, 2-7, 3-6, and 4-5
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trial 3
¢ o
&
o FIG. 8. Time series of phase differences ob-
tained from amplitudeqy;} and corresponding
50 trial 20 cluster quality measures in the case of strongly
o coupled Lorenz systems. Plot insets in the right
o of column focus upon time windows from Fig. 9 to
50 reveal more details. The bottom panel shows av-
eraged cluster quality measures obtained from
0 , ’ further 20 trials. The unit of cluster quality mea-
ime ime sures is 1%.
1 average
305
0
0 20 40 60 80
time
w o N ® S symmetric to points between 4,5 and 1,8. The noise-free
~ B N o ~ & . . . . .
= o = il o time variant of systenm(6) possesses an invariant linear manifold
! I [ {X5+i:X4—ily5+i:_y4—i125+i:Z4—illzlv:"!41 and .
3 three rotated copies thereof corresponding to the successive
_ pairs of nodedcf. [39]) and containing locally asymptotic
5 trial 2 stable limit cycles. A similar spatiotemporal symmetry oc-
. curs in trial 3, however, shifted by one element. In trial 20,
H““ “| quasistationary phases constant in space alternate with stripe
patterns, whereas no symmetric pattern is present similar to
space the ones in trials 2 and 3. In all the trials, plateaugpgf
S > > e 5 show good accordance in time to segments of quasistationary
b i IS »~ & time
5 ot BA
g W
i i YoY
5 trial 3 g 0 vore Y7
space
o w ~ ) S .
o 4 o o o time
1 =
=y
3 5
5 | trial 20
LA
I
space FIG. 10. Single amplitude$y;} and corresponding phases of
trial 2 in Fig. 8. For instance, plots of amplitudes marked by dots
FIG. 9. Space-time plots of amplitudefy;} of trials in and squares in the top panel correspond to curves with approxi-
Fig. 8. mately zero phase lag shown in the bottom panel.
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FIG. 12. Single amplitude$z} and corresponding phases of
FIG. 11. Time series of phase differences obtained from amplitrial 1 in Fig. 11. For instance, plots of amplitudes marked by dots
tudes{z} and corresponding cluster quality measure in case ofaind dashes in the left panel correspond to curves with phase lag 0
strongly coupled Lorenz systems. The bottom panel shows averagedhd 27 shown in the right panel.
cluster quality measures obtained from further 20 trials.

phase synchronizatiofef. insets in Fig. 8 Figure 10 depicts ¥ij(1) = V(cosA®;; (1)) +(sinAd;; (1))? 7)
amplitudes and their corresponding phase differences
A® 4y of the phase-synchronized state and illustrates the
observed mirror symmetry. Here, the plots indicate the wellwith i,j=1,... N. (---) denotes an average over a time
known nonsinusoidal behavior in amplitudég} yielding  window[t—AT/2;t+ AT/2]. Due to definition(7), large val-
large fluctuations of the corresponding phases and, subsges ofy;;(t) indicate a narrow-peaked unimodal distribution
quently, weak phase synchronization. of phase differences, whereag (t)—0 reflects a uniform
Different results can be obtained when considering amplidistribution. Notice that, since this synchronization index
tudes{z} in Eq. (6). Figure 11 shows time series of corre- only applies to bivariate data, that is, to single phase differ-
sponding phases in two trialgeft panel$ that reveal tran- ences, we extend it by computing the simple mean synchro-
sients on different time scales and final stationary phaseization index over all the phase differences of nearest
differences. Apparently, these differences in time scales reneighbors
sult from different initial conditions and the applied external
noise.
Finally, we computed the cluster quality measures for
both trials (right panel$ and the average over 20 further
trials (bottom panels For the single trials, the cluster quality
measures reveal transients and plateaus in accordance with
the time series of phase differences. The average cluster
guality measure increases from low valuespgf and satu-
rates at about= 30 (bottom panel, left hand siglelnterest-
ingly, these clear structures contrast with the alternating ones
from the amplitudegy;}. In Fig. 12 we show the amplitudes
and the corresponding phase pairs of the phase-synchronized
state. The phase relations change periodically within a nar-
row phase band implying that the data cover a bounded re-
gion in data space and, hence, repredbyt definition a
phase-synchronized stdiél].

trial 20

indices yij(t),yo(t)

i H I
D. Comparison to bivariate synchronization index 0 ', |A.T|_2. [ 2 i § i
At last, we compare our method with a synchronization 25tir?1°e t75 25tir?1?a t75

index being discussed by Rosenbl@nal. [36]. In case of
1:1 phase locking, Rosenblum and co-workers proposed an FIG. 13. Bivariate phase-synchronization indices of amplitudes
index that represents the circular standard deviation of phagg;} in Fig. 8 for different trials and values af T. Dotted lines,
differences{A®;;(t)} and that reads eight indicesy,; 1) (t); bold solid lines, indexyy(t).
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IV. DISCUSSION AND CONCLUSION

We examined the structure of phasic data in high-
dimensional spaces. In general, data clusters represent phase-
synchronized states so that members of clusters build time
segments of phase-synchronized states. Our method accounts
for the spatio-temporal structure of data and is invariant to-
wards constant offsets so that it seems reasonable to average
clustering results over trials. In the case of small trial num-
bers, the average cluster quality measure reflects coinciding
phase synchronization across the trial ensemble and, there-
fore, it allows for qualitative investigations of sets of chaotic
systems. For large numbers of realizations, the differential
cluster quality measure can be used to determine the distri-
bution of transients between phase-synchronized segments.

Classically, bivariate synchronization indices facilitate the
detection of phase synchronization between single phase
couples and help to estimate properties of their statistical

distribution in time. The corresponding time series of indices
teveal smooth transients subject to the applied time window.
With these indices one extracts temporal segments of quasis-
tationary phase synchronization solely based on individual
phase differences. In contrast, our method does not resolve
phase synchronization in single phase couples, but rather de-
tects mutual phase synchronization across all phases. This
aspect is particularly important in spatially extended sys-

Applying this form to phases of the amplitudgg} from tems, which exhibit strong correlation in space, i.e., with
ppiyIng 1 10 ph: . amp .__.._huge sets of recorded time series. In addition, our method
the previous study yields eight time series of synchronization

indices shown in Fig. 13 for two different trials and two yields _shar.p. porders .Of segments, and, hence, it allows for
different time spans\T, respectively. We find large values extracting initial and final time points of mutual phase syn-

and troughs ofyy(t) in time segments similar to our results chronization.
> (roughs Otyo S€9 . ' In summary, the present work describes a segmentation
while single indicesy;;(t) diverge from each other. For in-

I ) index for mutual phase synchronization in multivariate non-
stance, in frial 2 we observ¢54,y18§1_ (Fig. 13, left pan- stationary signals. With this segmentation index we are able
els), whereas values ofg; reach_a minimum of 0.6 at about to detect both the time segments and the duration of tran-
t=13. In contrast, our methogFig. 9 reveals mutual phase sients irrespective of the specific type of spatial synchroni-
synchronization beyont>7.3.

Si he bivari hronization index d zation patterns. Applications to stochastic phasic data and
Ince the bivariate synchronization index does accounfiye series from coupled chaotic systems reveal the proposed

for mutual increases and decreases of the single circular stapjex being able to capture the spatiotemporal structure of
dard deviations which also represents phase-locked behavi

it entirely neglects the spatiotemporal structure of the data
and, thus, fails in detecting mutual phase synchronization.
Allowing for a direct comparison with our studies, we finally
computed synchronization indices averaged over trials. Fig- A.H. would like to thank P.J. Beek and the Faculty of
ure 14 shows results for two values AT indicating strong Human Movement Sciences, Vrije Universiteit, Amsterdam,
synchronization at all times. These findings contrast oufor their kind hospitality and their financial support. A.H.
aforementioned results, which show peaks and distinct bowas also supported by the DFG Research Center “Math-
ders of phase-synchronized segments. ematics for key technologies” in Berlin, Germany.

FIG. 14. Averaged bivariate phase-synchronization indices o
amplitudes{y;} in Fig. 8 for different values oAT. Dotted lines,
eight averaged indices; . 1)i(t); bold solid lines, averaged index
Yo(t).

L N
Yo(t) = N Zl Yi+0i(), YN+ 1NT VIN-
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